Toxic Cyanobacteria (blue-green algae)
My original research area was primarily concerned with computer simulation of the growth and movement of problem cyanobacterial blooms and strategies for their management. I was lucky to work with colleagues such as Colin Reynolds at the Institute of Freshwater Ecology in Windermere and mentors Pauline Kneale, Mike Kirkby and Adrian McDonald at Leeds. My PhD students including Basak Guven and Mark Easthope carried this work forward and have excelled in their own careers.
Selected publications
2012 Howard, A. Toxic Cyanobacteria in Bengstsson, L., Herschy, R. and Fairbridge, R. (eds) Encyclopedia of Lakes and Reservoirs. Springer. ISBN 9781402056161.
2011 Guven, B. and Howard, A. Sensitivity analysis of a cyanobacterial growth and movement model under two different flow regimes, Environmental Modeling and Assessment. 16:577-589.
2007 Guven, B. and Howard, A. Identifying the critical parameters of a cyanobacterial growth and movement model by using generalised sensitivity analysis Ecological Modelling, 207, 11-21.
2007 Guven, B. and Howard, A. Modelling the growth and movement of cyanobacteria in river systems Science of the Total Environment, 368, 898-908.
2006 Guven, B. and Howard, A. A review and classification of the existing models of cyanobacteria Progress in Physical Geography, 30, 1-24.
2003 Burton, L.R. Howard, A. & Goodall, B. Construction of a historical Water Pollution Index for the Mersey Basin, Area, 35:4.
2002 Howard, A. & Easthope, M.P. Application of a model to predict cyanobacterial growth patterns in response to climatic change at Farmoor Reservoir, Oxfordshire, UK, The Science of the Total Environment, 282-283, 459-469.
2001 Howard, A. Modelling movement patterns of the cyanobacterium, Microcystis, Ecological Applications: the journal of the Ecological Society of America, 11, 304-310.
1999 Howard, A. Algal Modelling: Processes and Management: An Introduction, Hydrobiologia, 414, 35-37
1999 Howard, A. (ed) Algal Modelling: Processes & Management, Hydrobiologia, 414.
1999 Easthope, M.P. & Howard, A. Modelling algal dynamics in a lowland impoundment, Science of the Total Environment. 241, 17-25.
1999 Easthope, M.P. & Howard, A. Implementation and sensitivity analysis of a model of cyanobacterial movement and growth, Hydrobiologia, 414, 53-58.

1997 Whitehead, P.G. Howard, A. & Arulmani, C. Modelling algal growth and transport in rivers: a comparison of time series analysis, dynamic mass balance, and neural network techniques, Hydrobiologia, 347: 39-46.
1997 Kneale, P.E. & Howard, A. Statistical analysis of algal and water quality data, Hydrobiologia, 347: 59-63.
1997 Howard, A. Computer simulation modelling of buoyancy change in Microcystis, Hydrobiologia, 349: 111-117.
1997 Howard, A. Algal Modelling: Processes & Management. Editorial Preface. Hydrobiologia, 349:vii-ix.
1996 Howard, A. McDonald, A.T. Kneale, P.E. & Whitehead, P.G. Cyanobacterial (blue-green algal) blooms in the UK: A review of the current situation and potential management options, Progress in Physical Geography, 20, 63-81.
1996 Howard, A. Irish, A.E. & Reynolds, C.S. SCUM ’96: A new simulation of cyanobacterial underwater movement, Journal of Plankton Research, 18, 1375-1385.
1995 Howard, A. Kirkby, M.J., Kneale, P.E. & McDonald, A.T. Modelling the growth of cyanobacteria (GrowSCUM), Hydrological Processes, 9, 809-820.
1994 Howard, A. Problem cyanobacterial blooms – explanation and simulation modelling, Transactions of the Institute of British Geographers, 19, 213-224.
1993 Howard, A. SCUM – simulation of cyanobacterial underwater movement, Computer Applications in the Biosciences, 9, 413-419.

- One of the most heartbreaking occurrences for nature lovers is to discover a beached marine mammal such as a dolphin or whale. If the animal is still alive, marine biologists assisted by citizen volunteers try to protect the beached marine mammal from sun exposure and skin desiccation by pouring buckets of sea water on them […]
- In a new study, scientists have shown that chemical receptors that plants use to recognize nitrogen-fixing bacteria have developed the same function independently on at least three separate occasions through a process called convergent evolution.
- Bacteria are constantly moving with the help of motility organs called flagella or pili to colonize new niches. Also, bacteria can exchange information, like "speaking to each other," and thus acquire new abilities through the exchange of DNA materials.
- Earth was not always the blue-green world we know today: early Earth's oxygen levels were about a million times lower than we now experience. There were no forests and no animals. For ancient organisms, oxygen was toxic. What did life look like at that time then?
- From a distance, Biosphere 2 emerges from the cacti and creosote of the Sonoran desert like a gleaming oasis, a colony of glass and bright white structures. Despite being just outside Tucson, Arizona, it looks almost like a colony on another planet.
- Microbes in water are like invisible travelers—and some carry disease with them. Keeping the water that flows through our treatment plants, rivers and taps healthy and safe from microbial infection is a challenge.
- Extremophiles are a favorite tool of astrobiologists. But not only are they good for understanding the kind of extreme environments that life can survive in, sometimes they are useful as actual tools, creating materials necessary for other life, like oxygen, in those extreme environments. A recent paper from Daniella Billi of the University of Rome […]
- Among the tiniest living things in the ocean are a group of single-celled microbes called Prochlorococcus. They are cyanobacteria, also known as blue-green algae, and they supply nutrients for animals all the way up the food chain. Over 75% of surface waters teem with Prochlorococcus, but as ocean temperatures rise, researchers fear that the water […]
- Life is complicated, and not just in a philosophical sense. But one simple thing we know about life is that it requires energy, and to get that energy it needs certain fundamental elements. A new paper published in The Open Journal of Astrophysics by Giovanni Covone and Donato Giovannelli from the University of Naples discusses […]
- The microscopic alliance between algae and bacteria offers rare, step-by-step snapshots of how bacteria lose genes and adapt to increasing host dependence. This is shown by a new study led by researchers from Stockholm University, in collaboration with the Swedish University of Agricultural Sciences and Linnaeus University, published in Current Biology.

