A long-standing research area primarily concerned with computer simulation of the growth and movement of problem cyanobacterial blooms and strategies for their management.

I have been interviewed several times for ITV and BBC news following outbreaks of toxic blue-green algae affecting waterbodies, such as lakes and rivers used for recreation and/or fishing.

2012 Howard, A. Toxic Cyanobacteria in Bengstsson, L., Herschy, R. and Fairbridge, R. (eds) Encyclopedia of Lakes and Reservoirs. Springer. ISBN 9781402056161.

2011 Guven, B. and Howard, A. Sensitivity analysis of a cyanobacterial growth and movement model under two different flow regimes, Environmental Modeling and Assessment. 16:577-589.

2007 Guven, B. and Howard, A. Identifying the critical parameters of a cyanobacterial growth and movement model by using generalised sensitivity analysis Ecological Modelling, 207, 11-21.

2007 Guven, B. and Howard, A. Modelling the growth and movement of cyanobacteria in river systems Science of the Total Environment, 368, 898-908.

2006 Guven, B. and Howard, A. A review and classification of the existing models of cyanobacteria Progress in Physical Geography, 30, 1-24.

2003 Burton, L.R. Howard, A. & Goodall, B. Construction of a historical Water Pollution Index for the Mersey Basin, Area, 35:4.

2002 Howard, A. & Easthope, M.P. Application of a model to predict cyanobacterial growth patterns in response to climatic change at Farmoor Reservoir, Oxfordshire, UK, The Science of the Total Environment, 282-283, 459-469.

2001 Howard, A. Modelling movement patterns of the cyanobacterium, Microcystis, Ecological Applications: the journal of the Ecological Society of America, 11, 304-310.

1999 Howard, A. Algal Modelling: Processes and Management: An Introduction, Hydrobiologia, 414, 35-37

1999 Howard, A. (ed) Algal Modelling: Processes & Management, Hydrobiologia, 414.

1999 Easthope, M.P. & Howard, A. Modelling algal dynamics in a lowland impoundment, Science of the Total Environment. 241, 17-25.

1999 Easthope, M.P. & Howard, A. Implementation and sensitivity analysis of a model of cyanobacterial movement and growth, Hydrobiologia, 414, 53-58.

Hydrobiologia special issue 1997

1997 Whitehead, P.G. Howard, A. & Arulmani, C. Modelling algal growth and transport in rivers: a comparison of time series analysis, dynamic mass balance, and neural network techniques, Hydrobiologia, 347: 39-46.

1997 Kneale, P.E. & Howard, A. Statistical analysis of algal and water quality data, Hydrobiologia, 347: 59-63.

1997 Howard, A. Computer simulation modelling of buoyancy change in Microcystis, Hydrobiologia, 349: 111-117.

1997 Howard, A. Algal Modelling: Processes & Management. Editorial Preface. Hydrobiologia, 349:vii-ix.

1996 Howard, A. McDonald, A.T. Kneale, P.E. & Whitehead, P.G. Cyanobacterial (blue-green algal) blooms in the UK: A review of the current situation and potential management options, Progress in Physical Geography, 20, 63-81.

1996 Howard, A. Irish, A.E. & Reynolds, C.S. SCUM ’96: A new simulation of cyanobacterial underwater movement, Journal of Plankton Research, 18, 1375-1385.

1995 Howard, A. Kirkby, M.J., Kneale, P.E. & McDonald, A.T. Modelling the growth of cyanobacteria (GrowSCUM), Hydrological Processes, 9, 809-820.

1994 Howard, A. Problem cyanobacterial blooms – explanation and simulation modelling, Transactions of the Institute of British Geographers, 19, 213-224.

1993 Howard, A. SCUM – simulation of cyanobacterial underwater movement, Computer Applications in the Biosciences, 9, 413-419.

  • Biological membranes play important roles in shaping the cell, sensing the external environment, molecule transport, and generating energy for life. One of the most significant biological membranes are the thylakoid membranes produced in plants, algae and cyanobacteria, which carry out the light reactions of photosynthesis.
  • A billion years ago, a single-celled eukaryote engulfed a cyanobacterium—an organism capable of converting the sun's energy into food in the form of carbohydrates. In one of the single most pivotal events in the history of life, instead of the bacterium being digested, an endosymbiosis was formed, with the bacterial cell persisting inside the host […]
  • Scientists from the University of Liverpool have revealed new insight into how cyanobacteria construct the organelles that are essential for their ability to photosynthesise. The research, which carried out in collaboration with the University of Science and Technology of China, has been published in PNAS.
  • Algae hold a lot of untapped potential for use in industry. So far algae have provided invaluable nutrition in the health food sector but have struggled to be competitive against petroleum-derived chemical production. Algae are more favorable to petroleum from an environmental standpoint but the production cost of culturing, collecting, extracting and refining adds up […]
  • Cyanobacteria, commonly referred to as blue-green algae, are the first organisms on earth that learned to extract electrons from water and convert sunlight to usable energy through photosynthesis. Using cyanobacteria as a model organism, the details of photosynthesis—the key process that supports all forms of advanced lives on earth—have been studied for many decades. And […]
  • Biological builders like beavers, elephants, and shipworms re-engineer their environments. How this affects their ecological network is the subject of new research, which finds that increasing the number of "ecosystem engineers" stabilizes the entire network against extinctions.
  • Cyanobacteria hardly need any nutrients and use the energy of sunlight. Bathers are familiar with these microorganisms—often incorrectly called "blue-green algae"—as they often occur in waters. A group of researchers at the Karlsruhe Institute of Technology (KIT) has discovered that the multicellular species Phormidium lacuna can be genetically modified by natural transformation and could thus […]
  • Reservoirs in the heart of an ancient Maya city were so polluted with mercury and algae that the water likely was undrinkable.
  • Heading to the lake this summer? While harmful algal blooms can cause health problems for lake visitors, satellite data can provide early detection of harmful algae, resulting in socioeconomic benefits worth hundreds of thousands of dollars from one harmful algal bloom event, a new study finds. A Resources for the Future (RFF) and NASA VALUABLES […]
  • Science fiction came up with machine-intelligent hunter drones and they have now become science fact with a new HKU-codeveloped autonomous 'hunter drone' that seeks out targets at night using a scanning laser.